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Thermal Jl + Jl Isomerizations of the Conformationally 
Restricted Cyclopropanes 2,4-Dehv droadamantane 
and 2,4-Dehydrohomoadamantane 

Sir: 
The cyclopropane to propene rearrangement is the 

prototype Jl + J2 cycloreaction. According to current 
understandings, it proceeds in a nonconcerted fashion 
by way of a trimethylene diradical intermediate which 
may revert to cyclopropane or react with a C-H bond to 
give olefinic product.1 

Molecular orbital and valence bond calculations 
of several types and degrees of complexity on the 
trimethylene diradical are in general agreement:1 the 
energy of the 90,90 form (I)2 increases monotonically 
as the angle 8 increases, reaching no energy well corre­
sponding to an intermediate. Near B — 110°, the 
0,0-trimethylene species (2) becomes the lower energy 
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form, and it may exist as a discrete entity. Thus, the 
transformation of cyclopropane into the trimethylene 
diradical intermediate, according to these calculations, 
involves both increasing the angle 9 and rotating C(I) 
and C(3) methylene hydrogens in a conrotatory or dis-
rotatory manner into the plane defined by the carbon 
atoms. 

How will a cyclopropane behave if it is conforma­
tionally restricted so that the geometry required for a 
0,0-trimethylene diradical intermediate may not be 
attained? Is the 0,0-diradical intermediate a necessary 
stage in thermal structural isomerizations of cyclo­
propanes? 

We have studied the thermal chemistry of two cyclo­
propane derivatives restricted to bond elongating distor­
tions and prevented from reaching the geometry char­
acteristic of 0,0-trimethylene diradicals. They give 
„2 + Jl cycloreactions quite smoothly: 2,4-dehydro-
adamantane3-6 (3) rearranges to protoadamantene 
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(4)37 in the gas phase with a first-order rate constant of 
about 10 -6 sec - 1 at 387°; 2,4-dehydrohomoadaman-
tane8 (5) is isomerized to homoadamantene (6)9'10 in the 

gas phase with a first-order rate constant of about 1O-4 

sec - 1 at 400°. These rearrangements proceed 20 and 80 
times faster than the formally analogous conversion of 
methylcyclopropane to 1-butene at the respective tem­
peratures.11,12 

To identify the bonds involved in the isomerization 
of 5, 2,4-dehydrohomoadamantane-5-13C (7) and 
4-homoadamantene-4-13C (8) were prepared from ad-
amantanone and potassium cyanide-13C (61 % enriched) 
by way of the cyanohydrin, the amino alcohol, homo-
adamantan-4-one-5-13C, and thermal decomposition 
of the lithium or sodium salts of the corresponding 
tosylhydrazones.8,10 

Pyrolysis of 7 gave recovered 7 of undiminished iso-
topic integrity and a 1:2 mixture of 8 and 9. The syn-

7,6 29.5 ,5138.9 9,5 35.1 

thesized sample of 8 was subjected to the reaction condi­
tions and found to suffer positional scrambling of the 
carbon-13 label to only a barely detectable extent. In a 
completely independent experiment, starting with 
adamantanone and labeled potassium cyanide, much 
larger samples of 7 and 8 were utilized; the same con­
trols were run with the same findings, and the homo­
adamantene produced by pyrolysis of 7 at 400° for 3 hr 
was a 27:73 mixture of 8 and 9 according to the relative 
intensities of the cmr absorptions at 5 138.9 and 35.1. 

These results are consistent with involvement of two 
„2 + „2 rearrangement modes: a [C(2)-C(4)/H-C(5)] 
bond reorganization and a [C(2)-C(4)/C(3)-C(ll)] 
process. The more precise experimental results obtained 
with the larger sample of 7 correspond to these two 
modes obtaining in 54:46 proportions.13 

We conclude that 0,0-trimethylene diradical inter­
mediates are not required in „2 + „2 isomerizations of 
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cyclopropane systems and that [C-C/C-C] cycloreac-
tion modes, though absent in some cases,14 are very 
much in evidence in the thermal isomerization of 2,4-
dehydrohomoadamantane. 
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An Energetically Concerted Reaction Profile for the 
Thermal Conversion of Cyclopropane to Propene and 
for Related Cycloreactions 

Sir: 

Cyclopropane isomerizes thermally to propene.1 

Were this reaction to be discovered today it would be 
classed as a „2 + „2 cycloreaction; the stereochemistry 
of the process and its relevance to orbital symmetry 
theory would be high priority topics for investigation. 

Chambers and Kistiakowsky2 recognized two distinct 
mechanistic possibilities: homolysis of a carbon-
carbon single bond to give a "radical," followed by a 
hydrogen migration; a direct isomerization according 
to the "1,2-unsaturation" proposals of Kassel.3 In 
time, the trimethylene diradical mediated two-step 
formulation gained a favored status relative to the con­
certed one-step mechanism, thanks largely to demon­
strations that cyclopropanes could be thermally epimer-
ized. and to suppositions that epimerizations and struc­
tural rearrangements shared a common reaction profile.4 

Orbital symmetry theory has prompted theoretical 
efforts to learn whether the 0,0-trimethylene diradical 
intermediate is formed preferentially in a conrotatory 
or disrotatory fashion, but it has not incited a chal­
lenge to the diradical schema for cyclopropane thermal 
chemistry. 

We have found that two conformationally restricted 
cyclopropanes, 2,4-dehydroadamantane and 2,4-dehy-
drohomoadamantane, rearrange smoothly in „2 + „2 
processes to give protoadamantene and homoadaman-
tene5 even though these polycyclic substrates would 
have severe difficulty attaining the 0,0-trimethylene di­
radical geometry. In the second example, both [C-C/ 
H-C] and [C-C/C-C] rearrangement modes were 
demonstrated through a carbon-13 labeling experi­
ment.6 In simplest form, these isomerization modes 
correspond to the reactions 1 -»> 2 and 1' -»• 2 ' . Geo­
metrical considerations appropriate to the dehydro-
homoadamantane system make a suprafacial, supra-
facial reaction stereochemistry seem most plausible. 
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These experimental results prompt reconsideration of 
mechanistic form for such „2 + „2 cycloreactions (1 -»• 
2, 1' -* 2 ' ; R,R' = H or alkyl), and recognition of the 
possibility that they may be energetically concerted6 

isomerizations. 
Elongation of a cyclopropane bond causes a mono-

tonic increase in the energy of the ground state con­
figuration (3).7 Such bond lengthening is sufficient 
to make the ground (3) and lowest energy doubly ex­
cited (4) configurations comparable in energy; extended 
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Huckel9 and ab initio SCF-MO10 treatments both 
predict a crossing of these two configurations at an 
angle d of 115 to 125°. This circumstance makes con­
figuration interaction necessary for adequate descrip­
tions of the distorted molecule and permits the elongated 
bond to react as an antisymmetric two-electron compo­
nent.6 

One antisymmetric and one symmetric two-electron 
bond may undergo thermal cycloreaction with supra-
facial, suprafacial stereochemistry concertedly. Gain­
ing antisymmetric character through molecular distor­
tions is then the basic prerequisite a cyclopropane C-C 
bond must satisfy to participate in state-conservative 
„2 + „2 cycloreactions when orbital symmetry allowed 
paths are geometrically awkward and energetically pro­
hibitive. Unconstrained cyclopropanes may gain anti­
symmetric character in a C-C bond through bond 
elongation or elongation plus rotations of the terminal 
methylene moieties.9 

The same pattern—thermal chemistry with state con­
servation in energetically concerted processes—may be 
followed as well in cycloreactions involving cyclopro­
pane C-C bonds and proximate double bonds, such as 
the vinylcyclopropane to cyclopentene conversion. 

The hypothesis advanced here is a new instance of a 
known phenomenon; an orbital symmetry disallowed 
reaction may be energetically concerted and state con-
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